
Highly Available Primary-Backup Mechanism for
Internet Services with Optimistic Consensus

Koji Hasebe, Naofumi Nishita, and Kazuhiko Kato
Department of Computer Science, University of Tsukuba

1-1-1 Tennodai, Tsukuba 305-8573, Japan
hasebe@cs.tsukuba.ac.jp, nishita@osss.cs.tsukuba.ac.jp, kato@cs.tsukuba.ac.jp

Abstract—We present an optimistic primary-backup (so-called
passive replication) mechanism for highly available Internet
services on intercloud platforms. Our proposed method aims at
providing Internet services despite the occurrence of a large-
scale disaster. To this end, each service in our method creates
replicas in different data centers and coordinates them with
an optimistic consensus algorithm instead of a majority-based
consensus algorithm such as Paxos. Although our method allows
temporary inconsistencies among replicas, it eventually converges
on the desired state without an interruption in services. In
particular, the method tolerates simultaneous failure of the
majority of nodes and a partitioning of the network. Moreover,
through interservice communications, members of the service
groups are autonomously reorganized according to the type of
failure and changes in system load. This enables both load
balancing and power savings, as well as provisioning for the
next disaster. We demonstrate the service availability provided
by our approach for simulated failure patterns and its adaptation
to changes in workload for load balancing and power savings by
experiments with a prototype implementation.

I. INTRODUCTION

With the growth of cloud computing, Internet services
merged onto a common platform have become popular. In
recent years, the interoperability of clouds has been thoroughly
investigated to achieve higher levels of service that can cope
with serious damage to a data center, provide computing power
for the real-time processing of large amounts of data, and
realize elastic management of huge computing resources.

In terms of the availability and fault tolerance of Internet
services, replication is a widely used approach. Despite the
simplicity of this technique, its implementation is complex
because replicating the service state on multiple physical nodes
requires that each replica remain synchronized and consistent
with the others. To realize consistency in replication, the
well-known primary-backup replication method (i.e., passive
replication) is often used [3]. In this model, one of the nodes
(the primary) processes requests from clients and provides re-
sponses. The other nodes (backups) periodically receive state-
update messages from the primary, allowing them to update
their state to match that of the primary. If the primary fails, one
of the backups is selected to take over as the new primary. In
implementing this technique, a consensus algorithm (see [4])
is often used to reach agreement among all nodes regarding
which is the current primary and which update message is the
latest. A well-known consensus algorithm is Paxos [14]. Gen-
erally speaking, this algorithm guarantees that 2F + 1 nodes

will achieve consensus in an environment where up to F nodes
may simultaneously fail. However, if the majority of nodes
fail, the algorithm terminates without achieving consensus.
Thus, an implementation of primary-backup replication with
such a majority-based algorithm cannot continue to provide
services if more than half of the nodes fail, for example, as the
result of a large-scale disaster. This limitation is, as Brewer’s
CAP theorem [1], [10] suggests, caused by the impossibility
of achieving both availability and consistency for services.

The objective of this research is to investigate a mechanism
to ensure high availability for Internet services based on the
primary-backup replication technique. In particular, the Inter-
net service platform based on our proposed method aims to
provide services despite a simultaneous failure of the majority
of nodes and a partitioning of the network. To achieve this,
we take an alternative optimistic approach; instead of using a
majority-based consensus algorithm, we use a modified Paxos
algorithm that allows agreement to be reached by fewer than
half of the nodes. Although this algorithm temporarily permits
an inconsistent situation (i.e., nodes may agree on different
states), it eventually reaches consistency even if a simultaneous
failure of the majority of nodes or a division of the network
occurs.

With this algorithm, the Internet services provided on the
system avoid interruption by a large-scale disaster. More
precisely, a system based on our mechanism continues to
provide services as long as at least one node survives. Never-
theless, owing to the modification of Paxos, our system may
demonstrate illegal behavior at certain times. Typically, when
a network partition divides into node groups consisting of a
primary and backups, one node becomes the primary in each
separate subgroup, and there may be multiple primaries for
a service. Thus, although our method cannot be applied to a
service that is required to maintain strict consistency, it is quite
useful for Internet services that require high availability but not
strict consistency, such as message boards for communication
during natural disasters.

Moreover, we incorporate a mechanism for load balancing
and the reduction of power consumption in the system. In
recent years, there have been a number of suggestions for
achieving these goals in cloud data centers (see [2]). One key
idea commonly seen in the literature is to diffuse and skew the
system’s workload according to its changes over time. Based
on this approach, in our method the members of a service

group are autonomously reorganized over nodes by migrating
stored data. This happens in accordance with changes in the
system load.

In this paper, we also demonstrate availability through some
failure patterns and evaluate the effectiveness of the load-
balancing and power-saving mechanisms through experiments
with a prototype implementation.

The rest of the paper is organized as follows: Section
II discusses related work. Section III provides an overview
of Paxos and explains how we modify the algorithm. Sec-
tion IV presents a system design using our method as a
typical application in an intercloud environment. Section V
describes our proposed primary-backup mechanism. Section
VI demonstrates service availability given various patterns of
failure through simulations. Finally, Section VII concludes and
recommends future work.

II. RELATED WORK

Various techniques have been proposed to realize replica-
tion mechanisms, and these can be classified into two main
categories: state machine and primary-backup replication.

In state machine (i.e., active) replication [17], each node
processes requests from the clients and transitions indepen-
dently. Generally, each transition is coordinated across the
nodes by means of a consensus algorithm. Although this
technique is useful, as a result of its low response time, it
has two significant drawbacks: there is a high computational
cost, and client requests must be processed in a deterministic
manner. On the other hand, primary-backup replication is
useful because of its low computational cost and applicability
to nondeterministic services. However, as mentioned in Sec-
tion I, a mechanism is needed that allows agreement on the
current primary and its implementation; this is not necessary
in state machine replication systems. As explained above, the
merits and demerits of these techniques are complementary.
To counter these drawbacks, some variant schemes have been
proposed in recent years. These include semiactive replication
[18] and semipassive replication [6].

However, it is assumed that these techniques will employ
a majority-based consensus. Thus, although they guarantee
replica consistency, they cannot tolerate the simultaneous
failure of a majority of the nodes or partitioning of the
network. To address the issue of availability, Dolev et al.
[9] proposed optimistic state machine replication based on
a self-stabilizing consensus algorithm [7], [8]. Subsequently,
Hasebe et al. [13] suggested a self-stabilizing primary backup
replication technique and its application to Internet service
platforms. The main motivation of our present study is to
develop a method for optimistic primary-backup replication
using a modified Paxos algorithm. We aim to apply this to
Internet service platforms in which the replicas of each service
are placed in different data centers.

III. THE PAXOS ALGORITHM AND MODIFICATION

In this section, we first provide an overview of the Paxos
algorithm [14] and then explain how to modify it to achieve
consensus even if fewer than half of the nodes survive.

Node 1
(Coodinator)

Node 2

Node 3

(1) Request for
preparation

(2) Ack/Nack (3) Propose (4) Ack/Nack (5) Decide

Fig. 1. Actions in each round in Paxos

A. Overview

Consensus is a fundamental problem in distributed comput-
ing. It is usually defined as the problem of achieving a goal
in light of failures where nonfailed nodes, which started with
different inputs, decide on a common output value.

Paxos [14] is a well-known algorithm used to solve this
problem. It proceeds in rounds and uses a rotating coodinator,
i.e., a unique round number i is initially assigned to each
node ni ∈ N = {n1, . . . , nk} and then a node becomes the
coodinator based on its current round number. (A possible
way to determine the current coordinator is to choose the
noncrashed node with the smallest ID.) In each round, the
coodinator proposes a preferred value v as the candidate for
the output; if this is accepted by the majority of the nodes, the
preference is chosen and the algorithm terminates. Otherwise,
the coodinator increases its round number by N and switches
roles with another node. We note that the round number of
each node is uniquely determined at any time, but there may
also be multiple coodinators in the system. More precisely, the
actions in each round consist of the following five steps (see
Fig. 1 for illustration). For readability, we use pc and pa to
denote the coodinator and the other nodes, respectively.

Step 1. pc sends a request for preparation of its round
number r, denoted by recPrep(r), to all the other
nodes.

Step 2. If pa receives recPrep(r) and pa has sent Ack
to request recPrep(r′) or to request acceptance of
recAccept(r′) with r′ > r, then it replies Nack
to the request. Otherwise, it replies with the mes-
sage Ack(r′′, vprop(pa)), where vprop(pa) is pa’s
proposed value and r′′ is the round number in
recAccept(r′′) that was most recently accepted by
pa. Here, if pa was never accepted, vprop and r′′ are
set to Null and 0, respectively.

Step 3. pc waits to receive messages from at least half of the
nodes (including itself). If the received messages in-
clude Nack , then pc terminates the round and incre-
ments r by N . If all the received messages are Ack,
then pc sends the message recAccept(r, vprop(pc))
to the other nodes; here r is the round number of
the current pc, and vprop(pc) is pc’s proposal.

Step 4. If pa receives recAccept(r) and it has sent Ack
to request recPrep(r′) or to request acceptance of
recAccept(r′) with r′ > r, then it replies Nack to
the request. Otherwise, pa replies Ack to the request.

n
 1

1

Cloud 1

n
 1

2
n
 1

k

p(s1)b1(s1) b2(s1)

b3(s1)

p(s2)

b1(s2)

b2(s2) b3(s2)

n
 2

1

Cloud 2

n
 2

2
n
 2

k

......

n
 1

3
n
 2

3

p(s3)b3(s3)

b2(s3)

b1(s3)

Fig. 2. Overview of the system architecture

Step 5. pc waits to receive messages from at least half of
the nodes (including itself). If the received messages
include Nack , then pc terminates the round and in-
crements r by N . Otherwise, pc decides on vprop(pc)
as the agreed value and terminates the procedure.

B. Modification of Paxos

As shown by [14], Paxos satisfies the following properties:
agreement (i.e., every noncrashed process must agree on the
same value), validity (the decided value is one of the inputs),
and termination (every noncrashed node eventually decides
on a value for output). On the other hand, because steps 3
and 5 require waiting for replies from at least half of the
nodes, if a majority of them fail, the coodinator cannot proceed
to the next step and the algorithm does not terminate. This
limitation is unavoidable whenever the agreement property
holds, because if the coodinator node sends its proposed
value before receiving messages from half of the nodes, there
may be multiple node groups deciding on different values.
In other words, guaranteeing agreement (i.e., consistency of
outputs) and tolerating a majority of node failures is a trade-off
that is inherited from the development of the primary-backup
mechanism.

To increase the availability of a primary-backup mechanism,
our approach weakens the restrictions at steps 3 and 5, i.e.,
we modify the algorithm so that the coodinator can propose
or decide even if the number of received messages does not
reach a majority. (However, to avoid frequent occurrences of
inconsistency among replicas caused by a temporary network
delay, setting a specific number of required messages that
should be received by the coodinator is worthwhile.) Below,
we investigate a primary-backup mechanism based on this
modified algorithm and its applicability to Internet service
platforms.

IV. SYSTEM DESIGN

Our proposed primary-backup mechanism is intended to
be applied primarily to Internet service platforms that are
deployed in data centers and clouds. Fig. 2 presents an
overview of the architecture of our target platform. Although
this platform is developed using a virtualization technique,
this discussion is omitted to focus attention on the mechanism
itself.

n
 1

1

Cloud 1 (Crashed)

n
 1

2
n
 1

k

p(s1)b1(s1) b2(s1)

b3(s1)

p(s2)

b1(s2)

b2(s2) b3(s2)

n
 2

1

Cloud 2

n
 2

2
n
 2

k

......

n
 1

3
n
 2

3

p(s3)b3(s3)

b2(s3)

b1(s3)

p' (s1)

b'1(s1) b'2(s1)

Fig. 3. System behavior after an entire data center fails

To explain the central idea, we consider a simple example
that consists of two data centers, “cloud 1” and “cloud 2.”
The nodes in the two clouds are denoted by {ni

1, n
i
2, . . . , n

i
ki
}

with i = 1, 2, and multiple servers coexist and provide Internet
services. Each service forms a group consisting of a primary
and some backups. (It is also possible that several nodes could
cooperate as a single primary.) In Fig. 2, we only illustrate
three groups for readability. Service s1 is provided by primary
p(s1) placed on node n1

2 in cloud 1, while p(s2) and p(s3), for
services s2 and s3, respectively, are placed on n2

2 and n2
3 in

cloud 2. For each service, the required number of backups and
the conditions of their locations can be predetermined. In this
case, we consider the requirement that every primary have at
least three backups, one of which is placed in a different cloud.
For example, p(s1) has three backups, i.e., b1(s1) and b2(s1)
placed on different nodes in cloud 1 and b3(s1) in cloud 2.

When developing a new primary on a node, our mechanism
automatically invites nodes that can play a role in its backup.
In addition, if a node detects the failure of another node in
the same group, the remaining nodes tend to invite a new
node to take over for the missing backup and maintain the
requirement. In each group, the primary periodically sends its
current service state to the backups, and if it fails, one of the
backups becomes the new primary and continues to provide
service. Owing to our consensus algorithm, services remain as
long as at least one node survives.

Fig. 3 illustrates the system behavior when a large-scale
disaster happens, i.e., all the nodes in cloud 1 have crashed.
In this case, the primary of service s1 is lost, and thus the
only surviving node, b3(s1) on n2

1, becomes the new primary
[denoted by p′(s1), enclosed by a bold rectangle in Fig. 3].
In addition, p′(s1) asks n2

2 and n2
3 to take over the roles of

b′11 (s1) and b′12 (s1), respectively. Furthermore, this new node
group tends to invite another node from a different cloud to
take over the role of b′13 (s1). Similarly, the groups for services
s2 and s3 complement its backup requirement in a different
cloud.

Fig. 4 shows the system’s behavior when the backbone
network between clouds 1 and 2 fails, making it impossible for
nodes in different clouds to communicate. In this case, in each
cloud every separated node group considers all nodes in the
other cloud to have crashed. Under our mechanism, in cloud 1,
b1(s2) on n1

1 and b3(s3) on n1
3 become primaries for s2 and s3

and then complement their backups in the same cloud and in
different clouds with which it can communicate; in cloud 2,

n
 1

1

Cloud 1

n
 1

2
n
 1

k

p(s1)b1(s1) b2(s1)

b3(s1)

p(s2)

b1(s2)

b2(s2) b3(s2)

n
 2

1

Cloud 2

n
 2

2
n
 2

k

......

n
 1

3
n
 2

3

p(s3)b3(s3)

b2(s3)

b1(s3)

Partitioned

p''(s3)

p''(s1)
p''(s2)

Fig. 4. System behavior after a network partition between clouds

n
 1

1

Cloud 1

n
 1

2
n
 1

k

p(s1)b1(s1) b2(s1)

b3(s1)

p(s2)

b1(s2)

b2(s2) b3(s2)

n
 2

1

Cloud 2

n
 2

2
n
 2

k

......

n
 1

3
n
 2

3

b2(s3)

b1(s3)

b3(s3) p(s3)

Fig. 5. Off-peak system behavior

b3(s1) on n2
1 becomes the primary for s1 and complements

its backups in a similar way. As this scenario indicates, a
network partitioning may lead to the existence of multiple
primaries for a service. Thus, each of the primaries provides
the same service independently, and the difference between
states will increase over time. During such a partition, each
node group periodically tries to communicate with the other
cloud. If the connection is restored, duplicated primaries merge
their states and one of them continues in the primary role while
the other disappears. Note that our mechanism allows multiple
primaries for a service, whereas in replication based on a
majority consensus, all services would stop to strictly avoid
any inconsistency. In general, merging different states is a
difficult task. However, in the case that a state changes only by
the appending of new data, as typified by an Internet message
board, the original state can be obtained with relatively little
effort.

So far, we have explained the mechanism for fault tolerance.
In a final example, we present the mechanism for load bal-
ancing and reducing the power consumption of a system. We
consider the allocation of primaries and backups as presented
in Fig. 2 and assume that the system workload is at peak-time
levels. If the load decreases and node n1

1 can take over the
role of b3(s3) on n1

3 without being overloaded, our mechanism
automatically moves the state stored by b3(s3) from n1

3 to n1
1,

thereby leaving n1
3 in a low-power mode (n2

3 can also be placed
into a low-power mode by migrating p(s3) to n2

2). When the
load increases and a node becomes overtaxed, it relinquishes
some of its roles to another node with a lower workload.

Migration of a primary or backup burdens the system
network. To reduce the migration cost, retaining the data after
a migration for reuse when a primary or backup returns to
its original position is worthwhile. This enables migration
by copying the difference from the previous migration. The

disadvantage of this technique is a trade-off with disk space;
however, if the system has enough storage and can afford
to create further redundancies, this technique can be useful
for effective migration. (See also [12] for details of a similar
technique.)

V. ALGORITHMS

Our primary-backup mechanism consists of the following
six algorithms:

1) Failure detection
2) Group reorganization
3) Consensus determination
4) Workload management
5) State updating
6) Group unification
Each node periodically executes these algorithms, and these

modules act independently and communicate with one another
by means of asynchronous message passing in a coordinated
manner. The group reorganization algorithm forms a group
for a service, and then the members of the group share the
roles of primary and backup by the (modified version of)
the consensus algorithm. The primary periodically updates
the service states using the state-update algorithm to maintain
consistency among the backups. When a node fails, the failure
detector identifies it and then conveys the information to the
group reorganization algorithm. In addition, each node has
predetermined upper and lower thresholds, and if the workload
exceeds the upper threshold or falls below the lower threshold,
the workload manager detects the condition and conveys this
information to the group reogranization algorithm. According
to the messages from the failure detectors and the workload
managers, the group reorganization algorithm periodically
executes the consensus algorithm and changes the members
of the group. Finally, if the existence of multiple primaries is
detected after recovery from a network partitioning, the group
unification algorithm merges the separated groups back into
the original one.

In the following subsections, we briefly overview these
algorithms.

A. Failure Detection

Failure detectors are popular applications that are respon-
sible for locating node failures or crashes in a distributed
system. Our implementation is based on the usual heartbeat-
style technique. That is, each node periodically transmits its
own heartbeat packet while simultaneously monitoring the
heartbeat packets received from other nodes. If a heartbeat
is not observed within a threshold time interval, the receiver
considers the sender to have failed.

B. Group Reorganization

The group reorganization algorithm manages the forming
of a group. This algorithm works in collaboration with the
consensus algorithm, the workload manager, and the group
unification algorithm. Each group is formed so that it satisfies
the following conditions:

1) There exists a single primary node.
2) There exist a backups in the same area.
3) There exist b backups in different areas.
4) All backups are placed in at least c different areas.
5) There is no node whose workload exceeds its upper

threshold.
The values of a, b, and c are tunable. If a group cannot
satisfy these conditions because of a node or network failure
or a change in workload, the consensus algorithm sends the
message lack to the group reorganization algorithm. Then the
group reorganization algorithm sends invite messages to all
the other nodes. A node receiving the invite message replies
with an accept message if it can take over for the missing
node. Finally, the group reorganization algorithm chooses
some of the nodes so as to satisfy these five conditions.

Algorithm 1 Consensus Algorithm
while true do

if p is the coordinator then
receive messages from the buffer
if receive newgroup(groups) then

groupps ← groups
end if
if receive failure(failedNode) then

failedNodep ← failedNode
end if
if receive serviceout(p′) then

outNode← outNode ∪ {p′}
end if
while groupx cannot satisfy the group conditions do

send lack to the group reorganization algorithm
wait to receive newgroup(groups) and groupps ← groups

end while
vprop ← groupps
execute the procedure for consensus
repgroups ← vdecide
send repgroups to the group reorganization algorithm
wait

else
while the coordinator fails do

receive messages from the buffer
if receive newgroup(groups) then

groupps ← groups
end if
if receive failure(failedNode) then

failedNodep ← failedNode
end if
if receive serviceout(p′) then

outNode← outNode ∪ {p′}
end if
if receive recPrep or recAccept then

send Ack or Nack
end if
if receive Decide(v) then

repgroupps ← v
send repgroups to the group reorganization algorithm

end if
end while

end if
end while

C. Consensus Determination
The consensus algorithm is the heart of our approach. This

algorithm is used to reach agreement among group members
about which are the primary and the backups, so a decided-
upon value determines these assignments.

Our optimistic consensus algorithm behaves as follows: The
coodinator can propose or decide if the number of received
messages reaches a specific value m, which may represent
less than a majority. When a node generates a proposed value,
it checks whether a change in the members is needed. If it
is, the consensus algorithm sends a request to reorganize the
group. If the group reorganization algorithm finds a possible
reorganization that satisfies the conditions on group members,
the consensus algorithm allocates the roles of the primary and
backups to the new members of the group. After the proposal
is decided, this decided-upon value is sent to the reorganization
algorithm, and then the group is reorganized.

The details are presented in Algorithm 1, where we intro-
duce the following expressions.

• newgroup(groups): possible members groups ⊆ N for
reorganization of the group of service s

• failure(failedNode): a message that the failed nodes are
failedNode ⊆ N

• outNode (⊆N): a list of nodes that need to leave a group
• serviceout: a request to leave a group
• assign groups: assignment of the primary and the back-

ups.

D. Workload Management

The workload manager monitors the load of its own node.
If this exceeds the upper threshold, the manager sends a
request to the consensus algorithm to release some of its
primaries and backups. In addition, if the workload falls
below the upper threshold, the manager sends a request to
the consensus algorithm to migrate all primaries and backups
to another node. However, if just any request were allowed,
frequent migrations could result. Thus, a request is accepted
if a primary or a backup migrates from a node with a lower
workload to another with a higher load.

E. State Updating

Every primary periodically sends the current state of its
service to all backups, while every backup updates its backup
state with the primary’s message. This procedure is managed
by the state-update algorithm.

F. Group Unification

When a network failure divides a group, our optimistic
consensus, allows two separate groups to be formed and
continue to provide the same service independently. During
such a network partitioning, the group unification algorithms
periodically send messages to try to communicate with each
other, and if the channel is restored, the algorithms in the
separated groups send a request to the consensus algorithm to
unify them into the original group.

VI. EXPERIMENTS WITH IMPLEMENTATION

To verify the correctness of our algorithm and to demon-
strate its ability to keep services available, we conducted
experiments with our current prototype implementation of the
proposed method. In addition, to demonstrate the mechanism

TABLE I
SERVER CAPACITY AND LOWER AND UPPER THRESHOLDS

Capacity Upper threshold Lower threshold
#1–#7 100 90 70
#8–#14 80 70 50
#15–#21 100 90 70
#22–#28 80 70 50

for load balancing and power saving, we used this implemen-
tation to simulate a change in the number of active physical
nodes and the average load in the course of a day in which
the system workload varies.

Our prototype consists mainly of the six modules explained
in the Section V. These modules behave independently and
communicate with each other by means of asynchronous
message passing. To implement these concurrent processes,
our prototype was implemented in Scala [16]. In particular,
the interprocess communications were implemented by using
Scala Actors library. On the other hand, our implementation
has not reached a practical level: it does not function as an
Internet service platform and cannot execute real application
servers.

A. Experimental Setup

The experiments were conducted on 28 PC servers, each
of which was equipped with 8 Intel Core i7 2.67 GHz CPUs,
11.8 GB memory, and a single 500 GB ATA disk. Each server
was connected to a single switch via a 1000Base-T network
adapter.

We virtually introduced two areas in the system; servers 1–
14 were placed in area 1, while servers 15–28 were in area 2.
As conditions for group membership, each primary must have
two backups in the same area and two in the other, unless the
required nodes are alive. If a group loses some of its backups in
a different area and no node remains to take over the backups
in that area, then the group complements them with nodes in
the same area. Instead of installing real software, the server
workloads were simulated by natural numbers. For each server,
the capacity and lower and upper thresholds were set as in
Table I.

B. Demonstration of Service Availability

As explained in Section IV, as examples of possible large-
scale disasters in a real system, we considered the following
two cases:

Case 1. All nodes in area 2 fail.
Case 2. The network between areas 1 and 2 is partitioned.

For each case, there were five services. The primaries for
services 1–3 were placed in area 1, while services 4 and 5
were in area 2. Every service has four backups, which satisfies
the condition described above. The workloads of the primary
and backup were respectively 70 and 20. The results of the
experiments are as follows.

Case 1: All nodes in area 2 fail. Fig. 6 illustrates the
behavior of the system when a failure occurs after a lapse
of 50 s. In this experiment, immediately after the failure,

Service 1

Service 2

Service 3

Service 4

Service 5

 0 50 100 150 200 250 300 350

Time (sec)

Normal Lack of Backups Lack of Primary

Fig. 6. Case 1: System behavior when all nodes in an area fail

Service 1

Service 2

Service 3

Service 4

Service 5

 0 50 100 150 200 250 300 350

Time (sec)

Normal in Both Areas

Lack of Primary in One Area,
Lack of Backups in One Area

Lack of Primary in One Area,
Lack of Backups in Both Areas

Two Primaries

Fig. 7. Case 2: System behavior when network partitioning occurs

services 1–3 lacked backups in area 2, and services 4 and
5 lacked both primaries and some of the backups. After 35–
40 s, each of services 1–3 invited two nodes into the group
and complemented the backups. On the other hand, after 57–
76 s, each of services 4 and 5 also complemented the backups,
and one former backup became a primary. We note that for
services 4 and 5, the complementing of the backups and
the election of a primary were accomplished simultaneously.
This is because these procedures are handled by the group
organization algorithm.

Case 2: The network is partitioned. Fig. 7 illustrates the
behavior of the system when a network failure occurs and how
the system recovers, after lapses of 50 and 250 s, respectively.
During the failure, none of the nodes in different areas can
communicate with each other. In this experiment, immediately
after the failure, in area 1 services 1–3 lacked backups and
services 4 and 5 lacked both a primary and backups, while
in area 2, services 1–3 lacked both a primary and backups
and services 4 and 5 lacked backups. After 40 s, services 1–3
in area 1, as well as services 4 and 5 in area 2, obtained the
required number of backups. Then, after 12 s, all primaries and
backups were complemented. Furthermore, after 250–300 s,
for each service the multiple primaries merged into a single
one.

From the results of these experiments, we conclude that
our mechanism behaves as intended and makes it possible to
continue to provide services in environments where more than
half the total number of nodes fail or network communication

 0

 50

 100

 150

 200

 0 4 8 12 16 20 24A
v
er

ag
e(

M
ax

/M
in

)
L

o
ad

 o
f

th
e

S
y
st

em

Time (hour)

Fig. 8. Average (max/min) system load

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20 24

T
h

e
 N

u
m

b
e
r

o
f

A
c
ti

v
e
 N

o
d

e
s

Time (hour)

Fig. 9. Number of active nodes

between different areas is lost.

C. Demonstration of Load Balancing and Power Reduction

In this experiment, we introduced 10 services. Five pri-
maries are initially located in each area. In the intended
environment, we considered the system load to vary over
the day. During the course of a day, the workloads of every
primary and backup were initially 30 and 10, respectively, and
these were incremented by values of 2 and 1 every 36 minutes
until the middle of the day (when the workloads were 70 and
30) and then decreased until the end, respectively. We assumed
that a node storing no primary or backups was at low power;
otherwise it was active.

Figs. 8 and 9 illustrate the change in the average (as well
as maximum and minimum) workload of active nodes and the
number of active nodes. Fig. 8 shows that the average load
was in the range of 60%–80%, which is about the same as the
range of predetermined upper and lower thresholds. However,
because of the limitation of allocating backups, our mechanism
could not achieve an optimal configuration. Fig. 9 shows
that our mechanism adjusts the number of physical nodes
to the variation in workload and reduces power consumption
effectively. Indeed, if we consider a static configuration (i.e.,
without migration), it is necessary to activate 20 nodes to deal
with the system load in this setting.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an optimistic primary-backup mechanism
for highly available Internet services, the prime application of

which is intercloud environments. The key idea is to use an
optimistic consensus algorithm that allows agreement to be
reached with fewer than half of the of nodes participating,
as opposed to a traditional majority-based one. In addition,
through interservice communications, members of service
groups are autonomously reorganized according to the type
of failure and changes in system load. This enables both load
balancing and power saving, as well as provisioning for the
next failure. Experiments show that our mechanism indeed
behaves in the intended manner and can tolerate various failure
patterns, including a simultaneous failure of the majority
of nodes or a partitioning of the network. Moreover, our
mechanism effectively skews workload, thereby reducing the
running time of active nodes.

In future work, we will investigate further to refine our pro-
totype implementation. In particular, we intend to implement
functions to provide real services on the system for practical
use.

REFERENCES

[1] E. A. Brewer. Towards robust distributed systems (Invited Talk). Princi-
ples of Distributed Computing (PODC 2000), 2000.

[2] T. Bostoen and S. Mullender. Power-Reduction Techniques for Data-
Center Storage Systems. ACM Computing Surveys, vol.45(3), 2013.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-
backup approach. Distributed Systems (2nd ed.), ACM press/Addison-
Wesley Publishing Co., pp.199-216, 1993.

[4] G. Coulouris, J. Dollimore, and T. Kindberg. Chapter 12 in Distributed
Systems: Concepts and Design (4th Edition), Addison Wesley, 2005.

[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A.
Warfield. Remus: High Availability via Asynchronous Virtual Machine
Replication. USENIX NSDI’08, pp.161-174, 2008.

[6] X. Defago and A. Schiper. Semi-Passive Replication and Lazy Consensus.
Journal of Parallel and Distributed Systems, vol.64(12), pp.1380-1398,
2004.

[7] E. W. Dijkstra. Self-Stabilizing System in Spite of Distributed Control.
Communication of the ACM, vol.17(11), pp.643-644, 1974.

[8] S. Dolev. Self-Stabilization. MIT Press, 2000.
[9] S. Dolev, R. I. Kat, and E. M. Schiller. When Consensus Meets Self-

Stabilization. Journal of Computer and System Science, vol.76(8), pp.884-
900, 2010.

[10] S. Gilbert and N. Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT
News, vol.33(2), pp.51-59, 2002.

[11] R. Guerraoui and A. Schiper. Consensus Service: a modular approach for
building agreement protocols in distributed system. Annual Symposium on
Fault Tolerant Computing, pp.168-177, 1996.

[12] K. Hasebe, T. Niwa, A. Sugiki, and K. Kato. Power-Saving in Large-
Scale Storage Systems with Data Migration. 2nd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom
2010), pp. 266-273, 2010.

[13] K. Hasebe, K. Yamatozaki, A. Sugiki, and K. Kato. Self-Stabilizing
Passive Replication for Internet Service Platforms. 4th IFIP International
Conference on New Technologies, Mobility and Security (NTMS 2011), 6
pages, 2011.

[14] L. Lamport. The Part-time Parliament. ACM TOCS, vol.16(2), pp.133-
169, 1998.

[15] D. Mazieres. Paxos Made Practical. Technical report, 2007 (available at
http://www.scs.stanford.edu/ dm/home/papers/).

[16] M. Odersky, L. Spoon, and B. Venners. Programming in Scala, Artima,
2008.

[17] F. B. Schneider. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys, vol.22(4),
pp.299-319, 1990.

[18] D. Stodden. Semi-Active Workload Replication and Live Migration with
Paravirtual Machines. Xen Summit, 2007.

