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Abstract

In contrast to the usual Tarskian set-theoretic semantics, in which the notion of validity
is defined for sentences, in proof-theoretic semantics of Prawitz and Schroeder-Heister, the
validity is defined for proofs or derivations. By defining the validity for a broader class
of inferences including invalid inferences, Prawitz (1973) conjectured completeness of proof-
theoretic semantics. In this article, we investigate the Prawitz’s completeness conjecture by
giving a characterization of proof-theoretic semantics in the phase semantic framework of
Okada & Takemura (2007).

Contents

1 Introduction 1

2 Phase semantics 3
2.1 Syntax of IL2

→∀at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Phase semantics for IL2
→∀at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Soundness and completeness of IL2
→∀at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Proof-theoretic semantics and phase semantics 9
3.1 Proof-theoretic validity of Prawitz and Schroeder-Heister . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Validity based on introduction rules: I-validity . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Validity based on elimination rules: E-validity . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Proof-theoretic semantics as phase semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 E-validity in phase semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 I-validity in phase semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Conclusion and discussion 12

1 Introduction

In traditional Tarskian set-theoretical semantics, the notion of validity is defined for sentences
or formulas in terms of truth conditions thereof. For example, a sentence A ∧ B (the con-
junction of sentences A and B) is valid if and only if A is valid and B is valid. In contrast,
in proof-theoretic semantics of Prawitz and Schroeder-Heister, the notion of validity is firstly
defined for derivations or proofs in terms of constructions thereof. For example, a derivation
t of A ∧ B is valid if and only if t reduces (or is equivalent) to a pair of derivations ⟨u, v⟩
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such that u of A is valid and v of B is valid. Then, a sentence is valid if there exists a valid
derivation thereof.

Proof-theoretic semantics goes back to remarks made by Gentzen, who introduced the sys-
tem of natural deduction consisting of introduction and elimination inference rules for every
logical connective. In [Gentzen 1934], he remarked that an introduction rule in the natural
deduction system gives the meaning of the logical connective in question, and this meaning jus-
tifies the corresponding elimination rule. By developing this idea, Prawitz [Prawitz 1971] for-
mally defined the proof-theoretic validity for deductions in the system of natural deduction for
intuitionistic logic. A deduction is valid, if it is in canonical form that ends with an introduc-
tion rule, and if its immediate subdeductions are valid. Thus, each introduction rule is valid
in its own right by definition. On the other hand, a deduction ends with an elimination rule is
valid if it reduces to the canonical form. Thus, each elimination rule should be justified to be
valid based on the meaning defined by the corresponding introduction rule. The term “proof-
theoretic semantics” was coined by Schroeder-Heister, and he has extensively analyzed and
developed it. See, for example, [Schroeder-Heister 2006, Piecha & Schroeder-Heister 2016,
Schroeder-Heister 2012] for recent studies on proof-theoretic semantics.

Prawitz further extended the notion of validity to a broader class of inferences called
arguments, which are essentially trees of formulas built from arbitrary inferences includ-
ing invalid inferences. Prawitz then formulated his completeness conjecture as follows; cf.
[Prawitz 1973, Prawitz 2013].

Prawitz’s conjecture: All inference rules that are valid in the sense of proof-theoretic
semantics hold as derived rules in Gentzen’s system of natural deduction for intuitionistic
logic.

This conjecture is still undecided and continues to be discussed extensively by logicians and
philosophers. See [Piecha & Schroeder-Heister 2016, Schroeder-Heister 2006, Schroeder-Heister 2012]
for the background, related research, and recent discussions.

Another origin of proof-theoretic semantics is the so-called “computability argument”
to prove the proof normalization theorem. In [Prawitz 1971], the proof-theoretic validity is
introduced in the appendix after a discussion of the proof normalization theorem of natural
deduction.

In [Okada & Takemura 2007], we introduced phase semantic framework to prove normal-
ization via completeness. Phase semantics was introduced by Girard [Girard 1987] as the
usual set-theoretical semantics for linear logic. See, for example, [Okada 2002] for phase se-
mantics. In [Okada & Takemura 2007], phase semantics for intuitionistic logic is extended by
augmenting proof-terms, i.e., the usual λ-terms. Then the completeness with respect to such
extended phase semantics implies the normal form theorem of intuitionistic logic. Our phase
semantic framework can be considered as one of the semantic variations of the computability
argument.

We investigate Prawitz’s completeness conjecture in our phase semantic framework. In
Section 2, we first review natural deduction for our atomic second-order propositional in-
tuitionistic logic IL2→∀at. Then, we introduce phase semantics for IL2→∀at, and prove the
soundness and the completeness theorems of IL2→∀at with respect to our phase semantics. In
Section 3, we first review Prawitz and Schroeder-Heister’s proof-theoretic semantics. Then,
we show that Prawitz and Schroeder-Heister’s proof-theoretic semantics is characterized as a
phase model consisting only of closed proof-terms. Finally, in Section 4, we discuss Prawitz’s
completeness conjecture from the view point of phase semantics.
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2 Phase semantics

We review our system IL2→∀at in Section 2.1, and introduce our phase semantics in Section
2.2. Then, we show the soundness and completeness theorems in Section 2.3.

2.1 Syntax of IL2→∀at

Our atomic second-order intuitionistic propositional logic IL2→∀at is essentially the same system
as Fat introduced by [Ferreira 2006, Ferreira & Ferreira 2013]. Fat is a subsystem of Girard’s
system F (cf. [Girard, Taylor & Lafont 1989]), where the comprehension, i.e., ∀-elimination
rule in natural deduction, is applied only to an atomic formula. Under the restriction, basic
properties such as normalization are proved in similar ways as first order cases. Moreover,
even if we restrict the comprehension, it is shown that intuitionistic connectives ∧,∨,⊥, ∃ are
definable in Fat as follows.

• A ∧B := ∀X.((A → (B → X)) → X)

• A ∨B := ∀X.((A → X) → ((B → X) → X))

• ⊥ := ∀X.X

• ∃X.A := ∀Y.(∀X.(A → Y ) → Y )

See [Ferreira 2006] for the detailed discussion on the definability of these connectives.

Our system is slightly different from Fat by considering a type assignment system, which
includes untypable terms.

Definition 2.1 Formulas of IL2→∀at are defined as follows.

A,B := X A → B ∀X.A

Definition 2.2 Proof-terms, or terms for short, of IL2→∀at are the following λ-terms:

t, s := x λxA.t ts ΛX.t tX

Note that in application terms of the form tX, applied formulas are restricted to be
propositional variables, i.e., atomic formulas.

We denote propositional variables by capital letters X,Y, Z, . . ., and other term-variables
by small letters x, y, z, . . .. By FV (t) (and FV (A)), we denote the set of propositional vari-
ables as well as term-variables those freely appear in a term t (resp. in a formula A).

We consider the usual βη-reduction rules for proof-terms.

Definition 2.3 βη-reduction rules are as follows.

β-reduction: (λxA.t)s → t[x := s] and (ΛX.t)Y → t[X := Y ]

η-reduction: λxA.(tx) → t when x ̸∈ FV (t) and ΛX.(tX) → t when X ̸∈ FV (t)

We call each term of the left-hand side of reduction rules → as a redex. A term t is in
normal form, if t contains no redex.
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Thus, by normal form, we mean βη-normal form in what follows.

The following investigation of our phase semantics and proof-theoretic semantics can be
exploited based on the above notion of reduction relation on terms. However, the slightly
weaker notion of equality relation on terms makes our definitions and discussion much simpler.
Thus, to make the outline of our discussion clear, we mainly consider the following βη-equality
relation on terms.

Definition 2.4 βη-equality relation ≃ is the reflexive, symmetric, and transitive relation
on terms satisfying the following conditions:

• (λxA.t)s ≃ t[x := s], and (ΛX.t)Y ≃ t[X := Y ].

• λxA.(tx) ≃ t when x ̸∈ FV (t), and ΛX.(tX) ≃ t when X ̸∈ FV (t).

• If s ≃ t, then us ≃ ut; su ≃ tu; sX ≃ tX; λxA.s ≃ λxA.t; and ΛX.s ≃ ΛX.t.

Inference rules of IL2→∀at are the usual second-order natural deduction rules for → and ∀,
except for ∀-elimination rule, whose instantiation is restricted to a propositional variable.

Definition 2.5 (Inference rules of IL2→∀at) A statement is of the form t : A with a term t
and a formula A. A context is a finite set of statements such that x1 : A1, . . . , xn : An where
all x1, . . . , xn are distinct variables. We write Γ,∆, . . . for any context. A term t is a proof
of A from assumptions Γ if a sequent Γ ⊢ t : A is derivable by the following inference rules
of IL2→∀at.

Γ, x : A ⊢ x : A
ax

Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A → B
→ i Γ ⊢ t : A → B Γ ⊢ s : A

Γ ⊢ ts : B
→ e

∆ ⊢ t : A
∆ ⊢ ΛX.t : ∀X.A

∀i Γ ⊢ t : ∀X.A
Γ ⊢ tY : A[X := Y ]

∀e

where X ̸∈ FV (∆).

→ i and ∀i are introduction rules, and → e and ∀e are elimination rules.

2.2 Phase semantics for IL2→∀at

Phase semantics was introduced by Girard [Girard 1987] as the usual set-theoretical semantics
for linear logic. Based on the domain consisting of a commutative monoid M , each formula
is interpreted as a closed subset α ∈ P(M) satisfying certain topological closure conditions.
In particular, our connectives → and ∀ are interpreted as follows.

• (A → B)∗ = {m ∈ M | m · n ∈ B∗ for any n ∈ A∗}
• (∀X.A)∗ = {m ∈ M | m ∈ (A[X := Y ])∗ for any variable Y }

See, for example, [Okada 2002] for phase semantics of classical and intuitionistic linear logic.
Phase semantics for (non-linear) intuitionistic logic is obtained by imposing the idempotency
condition on the underlying monoid, which corresponds to the contraction rule of Gentzen’s
sequent calculus, and by further imposing the monotonicity condition on closed sets, which
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corresponds to the weakening rule. In [Okada & Takemura 2007], phase semantics for intu-
itionistic logic is extended by augmenting the usual λ-terms, where elements of the monoid
correspond to contexts, and the domain consists of the pairs of a context and a term. Then
the completeness with respect to such extended phase semantics implies the normal form
theorem of intuitionistic logic.

The following phase semantics is essentially the same as [Okada & Takemura 2007], al-
though the atomic second-order ∀ is introduced and the Church-style system is adopted to
capture the second-order structure of proofs.

Definition 2.6 A phase space DM consists of the following items:

• A commutative monoid M = (M, ·, ε) that is idempotent, i.e., m · m = m for any
m ∈ M . Thus, M is in fact a set.

• The domain of the space is BM = {(m▷ t) | m ∈ M, and t is a term }.
• The set of closed sets DM ⊆ P(BM) whose element α, called a closed set, satisfies the

following closure conditions:

Monotonicity: If (m▷ t) ∈ α, then (m · n▷ t) ∈ α for any n ∈ M .

Equality: If (m▷ t) ∈ α and s ≃ t, then (m▷ s) ∈ α.

Definition 2.7 A phase model (DM, ∗) consists of a phase space DM and an interpretation
∗ such that X∗ ∈ DM.

The interpretation ∗ is extended to complex formulas as follows:

• (A → B)∗ = {(m▷ t) | (m · n▷ ts) ∈ B∗ for any (n▷ s) ∈ A∗}
• (∀X.A)∗ = {(m▷ t) | (m▷ tY ) ∈ (A[X := Y ])∗ for any variable Y }

Note that our connectives are interpreted based on corresponding elimination rules.
We usually denote m · n simply by mn.
It is shown that (A → B)∗ and (∀X.A)∗ are closed if so are A∗ and B∗.

Lemma 2.8 (Closed) If A∗, B∗ ∈ DM, then (A → B)∗, (∀X.A)∗ ∈ DM.

Proof. To show Equality of (A → B)∗, let (m ▷ t) ∈ (A → B)∗. By definition, we have
(mn ▷ tu) ∈ B∗ for any (n ▷ u) ∈ A∗. If s ≃ t, then we have su ≃ tu, and (mn ▷ su) ∈ B∗

since B∗ is closed. Thus, we have (m▷ s) ∈ (A → B)∗.
To show Monotonicity, let (m ▷ t) ∈ (A → B)∗. By definition, for any (l ▷ s) ∈ A∗, we

have (ml ▷ ts) ∈ B∗ which implies (mnl ▷ ts) ∈ B∗ for any n ∈ M since B∗ is closed. Thus,
we have (mn▷ t) ∈ (A → B)∗.

To show Equality of (∀X.A)∗, let (m▷ t) ∈ (∀X.A)∗. By definition, we have (m▷ tY ) ∈
(A[X := Y ])∗ for any variable Y . If s ≃ t, then we have sY ≃ tY , and (m▷ sY ) ∈ (A[X := Y ])∗

since (A[X := Y ])∗ is closed. Thus, we have (m▷ s) ∈ (∀X.A)∗.
To show Monotonicity, let (m▷ t) ∈ (∀X.A)∗. By definition, for any variable Y , we have

(m ▷ tY ) ∈ (A[X := Y ])∗, which implies (mn ▷ tY ) ∈ (A[X := Y ])∗ for any n ∈ M since
(A[X := Y ])∗ is closed. Thus, we have (mn▷ t) ∈ (∀X.A)∗.

Thus, every interpretation A∗ is a closed set in any phase model.
Our notion of validity is defined for proof-terms. In the following definition, we assume

all open assumptions of t are among x1 : A1, . . . , xk : Ak.
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Definition 2.9 (Validity) A term t of B with assumptions x1 : A1, . . . , xk : Ak, i.e., x1 : A1,
. . . , xk : Ak ⊢ t : B, is valid in a phase model (DM, ∗) if and only if, for any (mi ▷ ti) ∈ A∗

i ,

(
∏

1≤i≤k

mi ▷ t[x1 := t1, . . . , xk := tk]) ∈ B∗ in (DM, ∗).

x1 : A1, . . . , xk : Ak ⊢ t : B is valid if it is valid in any phase model.

In what follows, we abbreviate the simultaneous substitution t[x1 := t1, . . . , xk := tk] as
t[ ⃗xi := ti].

2.3 Soundness and completeness of IL2→∀at

We prove the soundness theorem of IL2→∀at. Since our connectives are interpreted based on
elimination rules in our phase semantics, the soundness of each elimination rule is immediate
by the definition of the interpretation. On the other hand, the soundness of each introduction
rule is derived from the equality closedness of the closed set.

Theorem 2.10 (Soundness) If Γ ⊢ t : A is derivable in IL2→∀at, then Γ ⊢ t : A is valid in
any phase model.

Proof. We assume Γ is x1 : A1, . . . , xk : Ak. We show the theorem by induction on the length
of proofs as usual.

• When Γ, x : A ⊢ x : A
ax

, we show (
∏

mi ·m▷ x[x := t]) ∈ A∗ for any (mi ▷ ti) ∈ A∗
i and

any (m▷ t) ∈ A∗. This is obtained by Monotonicity of A∗.

• When
Γ ⊢ t : A → B Γ ⊢ s : A

Γ ⊢ ts : B
→ e, by the induction hypothesis, for any (mi ▷ ti) ∈ A∗

i ,

we have (
∏

mi▷t[ ⃗xi := ti]) ∈ (A → B)∗ and (
∏

mi▷s[ ⃗xi := ti]) ∈ A∗. Then by the definition
of the interpretation of the implication, we have (

∏
mi ▷ ts[ ⃗xi := ti]) ∈ B∗.

• When
Γ, x : A ⊢ t : B

Γ ⊢ λxA.t : A → B
→ i, by the induction hypothesis, for any (mi ▷ ti) ∈ A∗

i and

any (m ▷ s) ∈ A∗, we have (
∏

mi · m ▷ t[ ⃗xi := ti, x := s]) ∈ B∗. Since t[ ⃗xi := ti, x := s] ≃
(λxA.t[ ⃗xi := ti])s and B∗ is equality closed, we have (

∏
mi · m ▷ (λxA.t[ ⃗xi := ti])s) ∈ B∗.

Thus, (
∏

mi ▷ λxA.t[ ⃗xi := ti]) ∈ (A → B)∗.

• When
Γ ⊢ t : ∀X.A

Γ ⊢ tY : A[X := Y ]
∀e, by the induction hypothesis, for any (mi▷ ti) ∈ A∗

i , we have

(
∏

mi ▷ t[ ⃗xi := ti]) ∈ (∀X.A)∗. Then by the definition of ∀, we have (
∏

mi ▷ tY [ ⃗xi := ti]) ∈
(A[X := Y ])∗.

• When
Γ ⊢ t : A

Γ ⊢ ΛX.t : ∀X.A
∀i, whereX ̸∈ FV (Γ), by the induction hypothesis, for any (mi▷ti)

∈ A∗
i , we have (

∏
mi ▷ t[ ⃗xi := ti]) ∈ A∗. Thus, we also have (

∏
mi ▷ t[ ⃗xi := ti, X := Y ]) ∈

(A[X := Y ])∗, which is proved by induction onA. Since t[ ⃗xi := ti, X := Y ] ≃ (ΛX.t)Y [ ⃗xi := ti]
and (A[X := Y ])∗ is equality closed, we have (

∏
mi ▷ (ΛX.t)Y [ ⃗xi := ti]) ∈ (A[X := Y ])∗.

Therefore, (
∏

mi ▷ ΛX.t[ ⃗xi := ti]) ∈ (∀X.A)∗.

To show the completeness theorem, we construct canonical model, i.e., a syntactical model,
where the validity in this model implies the derivability, as well as existence of a normal form.
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Definition 2.11 (DC , ∗) is constructed as follows:

• A commutative monoid C that consists of all contexts with the empty sequent ∅ as its
unit.

• BC = {(Γ▷ t) | Γ ∈ C, and t is a term }.
• [[A]] = {(Γ▷t) | t ≃ s such that Γ ⊢ s : A is derivable in IL2→∀at and s is in normal form }.
• X∗ = [[X]].

Lemma 2.12 (Canonical model) (DC , ∗) is a phase model.

Proof. It is sufficient to show that [[A]] is closed.
To show Equality, let (Γ ▷ t) ∈ [[A]]. By definition of [[A]], there exists a normal form u

such that t ≃ u and Γ ⊢ u : A is derivable. Thus, if s ≃ t, we have s ≃ t ≃ u and Γ ⊢ u : A
is derivable. Therefore, we have (Γ ▷ s) ∈ [[A]]. Monotonicity is immediate from the derived
rule of weakening in IL2→∀at.

Thus, X∗(= [[X]]) belongs to the set of closed sets DC , and (DC , ∗) is a phase model.

In the canonical model (DC , ∗), the following main lemma holds.

Lemma 2.13 (Main lemma) (x : A▷ x) ∈ A∗ ⊆ [[A]] holds in (DC , ∗).

Proof. We divide this main lemma into the following two claims:

1. If (Γ▷ xT1 · · ·Tn) ∈ [[A]], then (Γ▷ xT1 · · ·Tn) ∈ A∗,
where xT1 · · ·Tn is the abbreviation of applications (· · · ((xT1)T2) · · ·)Tn, and each Ti

denotes a term or a propositional variable.

2. A∗ ⊆ [[A]]

The first half of the main lemma (x : A▷ x) ∈ A∗ is obtained from the above claim (1), since
(x : A▷ x) ∈ [[A]]. We show the above two claims by induction on the complexity of A.

• When A ≡ X, since X∗ = [[X]] by definition, our claims (1) and (2) hold immediately.

• When A ≡ B → C,
(1) assume (Γ▷xT1 · · ·Tn) ∈ [[B → C]]. To show (Γ▷xT1 · · ·Tn) ∈ (B → C)∗, let (∆▷t) ∈ B∗.
Then, by the induction hypothesis, we have B∗ ⊆ [[B]], and hence, we have t ≃ v for some
normal v such that ∆ ⊢ v : B is derivable.

On the other hand, by the assumption (Γ▷xT1 · · ·Tn) ∈ [[B → C]], we have xT1 · · ·Tn ≃ u
for some normal u such that Γ ⊢ u : B → C is derivable. Note that we find the normal u
is of the form xT ′

1 · · ·T ′
n, where T ′

i is a normal term or a propositional variable. Thus,
(xT1 · · ·Tn)t ≃ uv and uv is in normal form. Furthermore, we have

Γ ⊢ u : B → C ∆ ⊢ v : B
Γ,∆ ⊢ uv : C

→ e

Thus, we have (Γ ·∆▷ (xT1 · · ·Tn)t) ∈ [[C]], and hence, by the induction hypothesis, we have
(Γ ·∆▷ (xT1 · · ·Tn)t) ∈ C∗. Therefore, (Γ▷ xT1 · · ·Tn) ∈ (B → C)∗.

(2) To show (B → C)∗ ⊆ [[B → C]], assume (Γ▷ t) ∈ (B → C)∗. Then, for any (∆▷ s) ∈ B∗,
we have (Γ ·∆▷ts) ∈ C∗. In particular, we have (Γ ·x : B▷tx) ∈ C∗ since (x : B▷x) ∈ B∗ by
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the induction hypothesis. Here, we assume x ̸∈ FV (t) without loss of generality. Again by the
induction hypothesis C∗ ⊆ [[C]], we have tx ≃ u for some normal u such that Γ, x : B ⊢ u : C
is derivable. tx ≃ u implies t ≃ λxB.(tx) ≃ λxB.u. If (i) u is of the form vx with x ̸∈ FV (v),
λxB.u is not normal, but (ii) otherwise, λxB.u is normal and, in this case (ii), we have

Γ, x : B ⊢ u : C

Γ ⊢ λxB.u : B → C
→ i

In the first case (i), we have t ≃ λxB.(vx) ≃ v, where v is normal since vx is so. Furthermore,
since Γ, x : B ⊢ vx : C is derivable and x ̸∈ FV (v), we find Γ ⊢ v : B → C is derivable.

Therefore, (Γ▷ t) ∈ [[B → C]].

• When A ≡ ∀X.B,
(1) assume (Γ▷ xT1 · · ·Tn) ∈ [[∀X.B]]. Then, we have xT1 · · ·Tn ≃ u for some normal u such
that Γ ⊢ u : ∀X.B is derivable. Observe that the normal form u is of the form xT ′

1 · · ·T ′
n,

where T ′
i is a normal term or a propositional variable. Hence, we have (xT1 · · ·Tn)Y ≃ uY

and uY is normal for any variable Y . Furthermore, we have

Γ ⊢ u : ∀X.B
Γ ⊢ uY : B[X := Y ]

∀e

Thus, we have (Γ▷(xT1 · · ·Tn)Y ) ∈ [[B[X:= Y ]]], and hence (Γ▷ (xT1 · · ·Tn)Y ) ∈ (B[X:= Y ])∗

by the induction hypothesis. Therefore, we have (Γ▷ xT1 · · ·Tn) ∈ (∀X.B)∗.

(2) To show (∀X.B)∗ ⊆ [[∀X.B]], assume (Γ ▷ t) ∈ (∀X.B)∗. Without loss of generality, we
assume X ̸∈ FV (t) ∪ FV (Γ). Then, by definition, we have (Γ▷ tY ) ∈ (B[X := Y ])∗ for any
Y . In particular, we have (Γ ▷ tX) ∈ B∗, and then, by the induction hypothesis B∗ ⊆ [[B]],
we have (Γ ▷ tX) ∈ [[B]]. Thus, we have tX ≃ u for some normal u such that Γ ⊢ u : B is
derivable. Then, from tX ≃ u, we have t ≃ ΛX.(tX) ≃ ΛX.u. If (i) u is of the form vX with
X ̸∈ FV (v), then ΛX.u is not normal, but (ii) otherwise, ΛX.u is normal and, in this case
(ii), we have

Γ ⊢ u : B
Γ ⊢ ΛX.u : ∀X.B

∀i

In the first case (i), we have t ≃ ΛX.(vX) ≃ v, where v is normal since vX is so. Furthermore,
since Γ ⊢ vX : B is derivable and X ̸∈ FV (v), we find Γ ⊢ v : ∀X.B is derivable.

Therefore, (Γ▷ t) ∈ [[∀X.B]].

Theorem 2.14 (Completeness) If Γ ⊢ t : A is valid in any phase model, then there exists
a normal form s such that t ≃ s and Γ ⊢ s : A is derivable in IL2→∀at.

Proof. Let Γ ⊢ t : A is valid in any phase model. Then, in particular, Γ ⊢ t : A is valid in the
canonical model (DC , ∗), that is, for any (Γi▷ti) ∈ A∗

i , we have (
∏

Γi ▷ t[x1 := t1, . . . , xk := tk])
∈ A∗. Since (xi : Ai ▷ xi) ∈ A∗

i in (DC , ∗), we have (Γ▷ t) ∈ A∗, which implies (Γ▷ t) ∈ [[A]]
since A∗ ⊆ [[A]] in (DC , ∗). Therefore, there exists a normal form s such that t ≃ s and
Γ ⊢ s : A is derivable.

Although the above completeness is slightly weaker than our soundness (Theorem 2.10),
if we add the following rule to IL2→∀at, the validity completely corresponds to the derivability.

Γ ⊢ t : A t ≃ s
Γ ⊢ s : A
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By combining our soundness and completeness, we obtain the following normal form
theorem.

Corollary 2.15 (Normal form) If Γ ⊢ t : A is derivable in IL2→∀at, then there exists a term
s in normal form such that s ≃ t.

3 Proof-theoretic semantics and phase semantics

We review proof-theoretic semantics of Prawitz and Schroeder-Heister in Section 3.1. Then,
in Section 3.2, we give a characterization of proof-theoretic semantics in our phase semantic
framework.

3.1 Proof-theoretic validity of Prawitz and Schroeder-Heister

By developing Gentzen’s idea, Prawitz [Prawitz 1971] formally defined the proof-theoretic
validity for deductions in the system of natural deduction for intuitionistic logic. A deduction
is valid, if it is in canonical form that ends with an introduction rule, and if its immediate
subdeductions are valid. A deduction ends with an elimination rule is valid if it reduces to the
canonical form. See, for example, [Schroeder-Heister 2006, Piecha & Schroeder-Heister 2016,
Schroeder-Heister 2012] for recent studies on proof-theoretic semantics.

3.1.1 Validity based on introduction rules: I-validity

Let us review, in more detail, the notion of proof-theoretic validity based on introduction rule,
called I-validity here. The following definition is essentially that of [Schroeder-Heister 2006],
although we generalize the reduction relation on terms to the equality relation. Furthermore,
we do not consider any extension of basic atomic system. This is because such an extension is
not considered in recent papers of Prawitz (cf. [Prawitz 1973, Prawitz 2013]), and the version
without base extensions is more appropriate for our discussion.

Let S be an atomic system, called “atomic base”, which is given by production rules
for atomic formulas, and which fixes the validity of atomic formulas. By slightly abusing
the notation, by S, we also denote a set of proof-terms consisting of production rules of the
atomic system S. Then, based on the given atomic base S, the validity of proof-terms is
defined. Since the notion of I-validity is defined with respect to a given atomic base S, it
is more properly said that “a term t is I-valid relative to S”. However, in what follows, we
simply say “t is I-valid” when the given atomic base is clear from the context.

The notion of proof-theoretic validity is firstly defined for closed terms, which do not
contain any free term-variable. Then, the validity of open terms containing free term-variables
is defined by substituting valid closed terms for free term-variables appropriately. In what
follows, we say a term t is “closed” if it does not contain any free term-variable.

1. A closed term t of an atom X is I-valid iff t ≃ s such that s ∈ S.

2. A closed term t of B → C is I-valid iff t ≃ λxB.u such that u[x := s] of C is I-valid
for every closed I-valid s of B.

3. A closed term t of ∀X.A is I-valid iff t ≃ ΛX.u such that u[X := Y ] of A[X := Y ] is
I-valid for every atom Y .
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4. An open term t of B from A1, . . . , An, where all open assumption of t are among
A1, . . . , An, is I-valid iff t[ ⃗xi := ti] of B is I-valid for every list of closed I-valid ti of Ai

(1 ≤ i ≤ n).

The above definition (3) for the atomic second-order quantifier ∀ is based on that for the
first-order ∀ given in [Prawitz 1971]. The terms s ∈ S of (1), λxB.u of (2), and ΛX.u of (3)
are called “canonical forms” in Prawitz’s original definition.

3.1.2 Validity based on elimination rules: E-validity

The duality between introduction and elimination rules of natural deduction enables us to
define the notion of validity based on elimination rules. We call this “E-validity”, and it is
also discussed by Prawitz and Schroeder-Heister, for example, in [Prawitz 1971, Prawitz 2007,
Schroeder-Heister 2006]. Only the following cases (2) and (3) for complex formulas are dif-
ferent from those of I-validity, and they are defined based on the corresponding elimination
rules.

1. A closed term t of an atom X is E-valid iff t ≃ s such that s ∈ S.

2. A closed term t of B → C is E-valid iff ts of C is E-valid for every closed E-valid s of
B.

3. A closed term t of ∀X.A is E-valid iff tY of A[X := Y ] is E-valid for every atom Y .

4. An open term t of B from A1, . . . , An is E-valid iff t[ ⃗xi := ti] of B is E-valid for every
list of closed E-valid ti of Ai (1 ≤ i ≤ n).

See [Prawitz 2007] for philosophical discussion on differences between I-validity and E-
validity.

3.2 Proof-theoretic semantics as phase semantics

We investigate proof-theoretic semantics of Prawitz and Schroeder-Heister in our phase se-
mantic framework. We first give a set-theoretical description of proof-theoretic semantics. Let
us begin with the E-validity, since its definition is closer to our interpretation of connectives
in phase semantics.

3.2.1 E-validity in phase semantics

Let us replace “a closed term t of A is E-valid” given in Section 3.1.2 by t ∈ A∗. Then, the
definition of E-validity is described as follows.

1. t ∈ X∗ iff t ≃ s such that s ∈ S.

2. t ∈ (B → C)∗ iff ts ∈ C∗ for every s ∈ B∗.

3. t ∈ (∀X.A)∗ iff tY ∈ (A[X := Y ])∗ for every atom Y .

4. x1 : A1, . . . , xn : An ⊢ t : B is E-valid iff t[ ⃗xi := ti] ∈ B∗ for every ti ∈ A∗
i .

Note that the validity of open terms (4) is essentially the same as our Definition 2.9.
The above set-theoretical description suggests a phase model consisting only of closed

terms. In particular, the interpretation of connectives → and ∀ is the same as that in phase
semantics.
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Firstly, in terms of syntax, we extend IL2→∀at by introducing an atomic base S: We add
⊢ t : X as an axiom of IL2→∀at with S for every t of X that belongs to S.

Next, we construct a special model by using only closed terms as follows.

Definition 3.1 (DE , ∗S) is constructed as follows:

• A commutative monoid E = {∅}, which consists only of the empty sequent ∅.
• The domain is BE = {(∅▷ t) | t is a closed term }.
• X∗ = [[X]]S = {(∅▷ t) | t ≃ s such that ⊢ s : X belongs to S}.

Although we usually denote (∅▷t) simply by t, note that t is a closed term in this context.
It is shown that every [[X]]S is a closed set, and we find that (DE , ∗S) is a phase model.

Lemma 3.2 (Phase model for E-validity) (DE , ∗S) is a phase model.

Proof. It is sufficient to show that [[X]]S is closed. We show that, for any s ∈ BE , if t ∈ [[X]]S
and s ≃ t, then s ∈ [[X]]S . Let t ∈ [[X]]S and s ≃ t. Then, by t ∈ [[X]]S , we have t ≃ u for
some u ∈ S such that ⊢ u : X is derivable. Since s ≃ t by assumption, we have s ≃ t ≃ u,
and hence, s ∈ [[X]]S . Monotonicity of [[X]]S is trivial since we do not consider any context
here.

Thus, our (DE , ∗S) is a phase model.

Since (DE , ∗S) is just the phase semantic description of the E-validity of proof-theoretic
semantics, the following is clear.

Proposition 3.3 Γ ⊢ t : A is valid in (DE , ∗S) if and only if Γ ⊢ t : A is E-valid in proof-
theoretic semantics.

By the above proposition, we find the following relationship between our phase semantics
and proof-theoretic semantics.

Proposition 3.4 If Γ ⊢ t : A is valid in any phase model, then Γ ⊢ t : A is E-valid in
proof-theoretic semantics.

Proof. If Γ ⊢ t : A is valid in any phase model, then, in particular, it is valid in (DE , ∗S),
which is equivalent to that Γ ⊢ t : A is E-valid in proof-theoretic semantics by Proposition
3.3.

The reverse of the above proposition implies the Prawitz’s completeness conjecture, which
is discussed in Section 4.

3.2.2 I-validity in phase semantics

Next, to investigate the notion of I-validity in our phase semantics, we construct a phase
model for I-validity. The domain and the interpretation of atomic formulas are the same
as those of the phase model for E-validity. We modify the interpretation of → and ∀. To
distinguish from the previous interpretation ∗ for E-validity, we use ⋆ for the interpretation
of → and ∀ based on their introduction rules.
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Definition 3.5 (DE , ⋆S) is constructed as follows:

• The space DE is the same as the phase space for E-validity of Definition 3.1.

• X⋆ = [[X]]S .

• (B → C)⋆ = {t | t ≃ λxB.u such that u[x := s] ∈ C⋆ for any s ∈ B⋆}.

• (∀X.A)⋆ = {t | t ≃ ΛX.u such that u[X := Y ] ∈ (A[X := Y ])⋆ for any Y }.

Lemma 3.6 (Phase model for I-validity) (DE , ⋆S) is a phase model.

Proof. To show this lemma, we prove A∗ = A⋆ by the induction on A.

(1) When A ≡ X, we have X∗ = [[X]]S = X⋆ by definition.

(2) When A ≡ B → C, we first show (B → C)⋆ ⊆ (B → C)∗. Let t ∈ (B → C)⋆. Then, by
definition, t ≃ λxB.u such that u[x := s] ∈ C⋆ for any s ∈ B⋆. Assume s ∈ B∗ (= B⋆ by
the induction hypothesis). Since t ≃ λxB.u, we have ts ≃ (λxB.u)s ≃ u[x := s] ∈ C⋆, which
implies ts ∈ C∗ by the induction hypothesis. Therefore, we have t ∈ (B → C)∗.

Next, we show (B → C)∗ ⊆ (B → C)⋆. Let t ∈ (B → C)∗. Since (B → C)∗ is equality
closed, we have λxB.(tx) ≃ t ∈ (B → C)∗ for some x ̸∈ FV (t). Thus, t is equivalent to
a λ-abstraction term. Next, we show tx[x := s] ∈ C⋆ for any s ∈ B⋆. Let s ∈ B⋆ (= B∗

by the induction hypothesis). Then, since t ∈ (B → C)∗, we have ts ∈ C∗, and hence,
tx[x := s] ≡ ts ∈ C∗ = C⋆ by the induction hypothesis. Therefore, t ∈ (B → C)⋆.

(3) When A ≡ ∀X.B, we first show (∀X.B)⋆ ⊆ (∀X.B)∗. Let t ∈ (∀X.B)⋆. Then, by
definition, t ≃ ΛX.u such that u[X := Y ] ∈ (B[X := Y ])⋆ for any Y . Thus, for any Y , we
have:

tY ≃ (ΛX.u)Y ≃ u[X := Y ] ∈ (B[X := Y ])⋆ = (B[X := Y ])∗

Therefore, tY ∈ (B[X := Y ])∗, and we have t ∈ (∀X.B)∗.

Next, we show (∀X.B)∗ ⊆ (∀X.B)⋆. Let t ∈ (∀X.B)∗. Since (∀X.B)∗ is closed, we have
ΛY.(tY ) ≃ t ∈ (∀X.B)∗ with Y ̸∈ FV (t). Thus, t is equivalent to a Λ-abstraction term. We
then show tY [Y := Z] ∈ (B[Y := Z])∗ for any Z. Since t ≃ ΛY.(tY ), we have:

tY [Y := Z] ≡ tZ ≃ (ΛY.(tY ))Z ∈ (B[Y := Z])∗ = (B[Y := Z])⋆

Therefore, we have t ∈ (∀X.B)⋆.

Thus, (DE , ⋆S) is a phase model.

Thus, both proof-theoretic E-validity and I-validity are characterized in our phase seman-
tics as phase models consisting only of closed terms.

4 Conclusion and discussion

If we consider a tightly typed system, where only typable terms, i.e., proofs are allowed to
be terms legally, then Prawitz’s conjecture is trivial. This is because in such a system, the
conjecture just says that “valid proofs are proofs.” Thus, Prawitz considered a broader class
of reasoning called “arguments”, which are essentially trees of formulas built from arbitrary
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inferences including invalid inferences. For example, as [Schroeder-Heister 2006] describes,
the following inference may appear in an argument:

A → (B → C)

B → (A → C)

As well as valid inferences, invalid inferences such as the following inference may appear in
an argument:

A → B
B → A

Since proof-theoretic validity is defined based on reduction rules on terms, according to the
generalization to arguments, reduction rules are also generalized, which are called “justifi-
cations”. Prawitz considers the completeness of such a system of arguments. Although our
proof-terms are not so general as Prawitz’s arguments, our system is not tightly typed and
contains untypable terms, which may be considered as a certain kind of arguments.

If we extend the notion of Prawitz’s validity so that it is applied to terms with contexts
containing free variables, and if we regard x : A ⊢ x : A as valid for any formula A, then our
phase semantics can be regarded as proof-theoretic semantics, and our completeness can be
applied to such proof-theoretic semantics.

However, our completeness cannot be applied to the original Prawitz’s proof-theoretic
semantics straightforwardly. As discussed in the last section, for any closed term t of A,
its validity in Prawitz’s proof-theoretic semantics coincides with t ∈ A∗ in our phase model.
Unfortunately, this correspondence cannot be extended to terms with free variables. Further-
more, our completeness proof also cannot be applied, since the fact (x : A ▷ x) ∈ A∗, i.e.,
x : A ⊢ x : A is valid, plays an essential role in our completeness proof.

Thus, if we remain the original proof-theoretic semantics of Prawitz and Schroeder-Heister,
it is characterized, from the phase semantic viewpoint, as a phase model consisting only of
closed terms. Then, Prawitz’s completeness conjecture is characterized as the completeness
with respect to the phase model consisting only of closed terms.

Acknowledgments. I am very grateful to Yuta Takahashi for his valuable comments and
discussion.
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